On hyperelliptic C∞-Lefschetz fibrations of four-manifolds
نویسنده
چکیده
We show that hyperelliptic symplectic Lefschetz fibrations are symplectically birational to two-fold covers of rational ruled surfaces, branched in a symplectically embedded surface. This reduces the classification of genus 2 fibrations to the classification of certain symplectic submanifolds in rational ruled surfaces.
منابع مشابه
Symplectic Lefschetz fibrations and the geography of symplectic 4-manifolds
This paper is a survey of results which have brought techniques from the theory of complex surfaces to bear on symplectic 4-manifolds. Lefschetz fibrations are defined and some basic examples from complex surfaces discussed. Two results on the relationship between admitting a symplectic structure and admitting a Lefschetz fibration are explained. We also review the question of geography: which ...
متن کاملRealizing 4-manifolds as Achiral Lefschetz Fibrations
We show that any 4-manifold, after surgery on a curve, admits an achiral Lefschetz fibration. In particular, if X is a simply connected 4-manifold we show that X#S × S and X#S×̃S both admit achiral Lefschetz fibrations. We also show these surgered manifolds admit near-symplectic structures and prove more generally that achiral Lefschetz fibrations with sections have near-symplectic structures. A...
متن کاملWrinkled Fibrations on Near-Symplectic Manifolds
Motivated by the programmes initiated by Taubes and Perutz, we study the geometry of near-symplectic 4-manifolds and broken Lefschetz fibrations on them. We present a set of four moves which allow us to pass from any given fibration to any other broken fibration which is deformation equivalent to it. The arguments rely on the introduction of a more general class of maps, which we call wrinkled ...
متن کاملSymplectic four-manifolds and conformal blocks
We apply ideas from conformal field theory to study symplectic four-manifolds, by using modular functors to “linearise” Lefschetz fibrations. In Chern-Simons theory this leads to the study of parabolic vector bundles of conformal blocks. Motivated by the Hard Lefschetz theorem, we show the bundles of SU(2) conformal blocks associated to Kähler surfaces are Brill-Noether special, although the as...
متن کاملHyperelliptic Lefschetz Fibrations and Branched Covering Spaces
Let M be a smooth 4-manifold which admits a relatively minimal hyperelliptic genus h Lefschetz fibration over S. If all of the vanishing cycles for this fibration are nonseparating curves, then we show that M is a 2-fold cover of an S-bundle over S, branched over an embedded surface. If the collection of vanishing cycles for this fibration includes σ separating curves, we show that M is the rel...
متن کامل